Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.531
Filtrar
1.
Sci Adv ; 10(14): eadl2764, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38579001

RESUMO

Despite seizure control by early high-dose pyridoxine (vitamin B6) treatment, at least 75% of pyridoxine-dependent epilepsy (PDE) patients with ALDH7A1 mutation still suffer from intellectual disability. It points to a need for additional therapeutic interventions for PDE beyond pyridoxine treatment, which provokes us to investigate the mechanisms underlying the impairment of brain hemostasis by ALDH7A1 deficiency. In this study, we show that ALDH7A1-deficient mice with seizure control exhibit altered adult hippocampal neurogenesis and impaired cognitive functions. Mechanistically, ALDH7A1 deficiency leads to the accumulation of toxic lysine catabolism intermediates, α-aminoadipic-δ-semialdehyde and its cyclic form, δ-1-piperideine-6-carboxylate, which in turn impair de novo pyrimidine biosynthesis and inhibit NSC proliferation and differentiation. Notably, supplementation of pyrimidines rescues abnormal neurogenesis and cognitive impairment in ALDH7A1-deficient adult mice. Therefore, our findings not only define the important role of ALDH7A1 in the regulation of adult hippocampal neurogenesis but also provide a potential therapeutic intervention to ameliorate the defective mental capacities in PDE patients with seizure control.


Assuntos
Ácido 2-Aminoadípico/análogos & derivados , Aldeído Desidrogenase , Epilepsia , Piridoxina , Humanos , Animais , Camundongos , Piridoxina/farmacologia , Convulsões/tratamento farmacológico , Convulsões/etiologia , Pirimidinas/farmacologia , Cognição
2.
Methods Mol Biol ; 2777: 83-89, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478337

RESUMO

Cancer stem cells (CSCs) are a small tumor cell subpopulation, driving cancer initiation, progression, multidrug resistance, and metastasis. Several methods are used to detect and isolate CSCs by flow cytometry. Among these, measurement of aldehyde dehydrogenase (ALDH) activity within the cell is an assay widely used to identify and isolate CSCs from different types of solid tumors. The aldehyde dehydrogenase (ALDH) is a polymorphic enzyme responsible for the oxidation of aldehydes to carboxylic acids, overexpressed both in normal and cancer stem cells. In this chapter, it is described how CSCs are detected and isolated by using ALDH activity assay.


Assuntos
Neoplasias , Células-Tronco Neoplásicas , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/metabolismo , Aldeído Desidrogenase/metabolismo , Citometria de Fluxo , Neoplasias/patologia
3.
Int J Biol Macromol ; 265(Pt 2): 131091, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521319

RESUMO

Acetaldehyde dehydrogenase 2 (ALDH2) is a crucial enzyme in alcohol metabolism, and oral administration of ALDH2 is a promising method for alcohol detoxification. However, recombinant ALDH2 is susceptible to hydrolysis by digestive enzymes in the gastrointestinal tract and is expressed as inactive inclusion bodies in E. coli. In this study, we performed three rounds of rational design to address these issues. Specifically, the surface digestive sites of pepsin and trypsin were replaced with other polar amino acids, while hydrophobic amino acids were incorporated to reshape the catalytic cavity of ALDH2. The resulting mutant DE2-852 exhibited a 45-fold increase in soluble expression levels, while its stability against trypsin and pepsin increased by eightfold and twofold, respectively. Its catalytic efficiency (kcat/Km) at pH 7.2 and 3.2 improved by more than four and five times, respectively, with increased Vmax and decreased Km values. The enhanced properties of DE2-852 were attributed to the D457Y mutation, which created a more compact protein structure and facilitated a faster collision between the substrate and catalytic residues. These results laid the foundation for the oral administration and mass preparation of highly active ALDH2 and offered insights into the oral application of other proteins.


Assuntos
Aldeído Desidrogenase , Pepsina A , Humanos , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/química , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Tripsina , Escherichia coli/genética , Escherichia coli/metabolismo , Aminoácidos
4.
J Pharmacol Exp Ther ; 389(2): 163-173, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38453527

RESUMO

Hepatocellular carcinoma (HCC) is the predominant pathologic type of primary liver cancer. It is a malignant tumor of liver epithelial cells. There are many ways to treat HCC, but the survival rate for HCC patients remains low. Therefore, understanding the underlying mechanisms by which HCC occurs and develops is critical to explore new therapeutic targets. Aldehyde dehydrogenase 2 (ALDH2) is an important player in the redox reaction of ethanol with endogenous aldehyde products released by lipid peroxidation. Increasing evidence suggests that ALDH2 is a crucial regulator of human tumor development, including HCC. Therefore, clarifying the relationship between ALDH2 and HCC is helpful for formulating rational treatment strategies. This review highlights the regulatory roles of ALDH2 in the development of HCC, elucidates the multiple potential mechanisms by which ALDH2 regulates the development of HCC, and summarizes the progress of research on ALDH2 gene polymorphisms and HCC susceptibility. Meanwhile, we envision viable strategies for targeting ALDH2 in the treatment of HCC SIGNIFICANCE STATEMENT: Numerous studies have aimed to explore novel therapeutic targets for HCC, and ALDH2 has been reported to be a critical regulator of HCC progression. This review discusses the functions, molecular mechanisms, and clinical significance of ALDH2 in the development of HCC and examines the prospects of ALDH2-based therapy for HCC.


Assuntos
Aldeído Oxirredutases , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Aldeído Desidrogenase , Aldeído-Desidrogenase Mitocondrial/genética
5.
Cell Commun Signal ; 22(1): 194, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539211

RESUMO

BACKGROUND: Chemoresistance is associated with tumor relapse and unfavorable prognosis. Multiple mechanisms underlying chemoresistance have been elucidated, including stemness and DNA damage repair. Here, the involvement of the WNT receptor, FZD5, in ovarian cancer (OC) chemoresistance was investigated. METHODS: OC cells were analyzed using in vitro techniques including cell transfection, western blot, immunofluorescence and phalloidin staining, CCK8 assay, colony formation, flowcytometry, real-time PCR, and tumorisphere formation. Pearson correlation analysis of the expression levels of relevant genes was conducted using data from the CCLE database. Further, the behavior of OC cells in vivo was assessed by generation of a mouse xenograft model. RESULTS: Functional studies in OC cells showed that FZD5 contributes to epithelial phenotype maintenance, growth, stemness, HR repair, and chemoresistance. Mechanistically, FZD5 modulates the expression of ALDH1A1, a functional marker for cancer stem-like cells, in a ß-catenin-dependent manner. ALDH1A1 activates Akt signaling, further upregulating RAD51 and BRCA1, to promote HR repair. CONCLUSIONS: Taken together, these findings demonstrate that the FZD5-ALDH1A1-Akt pathway is responsible for OC cell survival, and targeting this pathway can sensitize OC cells to DNA damage-based therapy.


Assuntos
Aldeído Desidrogenase , Neoplasias Ovarianas , Humanos , Animais , Camundongos , Feminino , Aldeído Desidrogenase/genética , Resistencia a Medicamentos Antineoplásicos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Recidiva Local de Neoplasia/patologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/metabolismo
6.
Nat Commun ; 15(1): 2594, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519490

RESUMO

In the ALDH2 rs671 variant, a guanine changes to an adenine, resulting in a dramatic decrease in the catalytic activity of the enzyme. Population-based data are contradictory about whether this variant increases the risk of Alzheimer's disease. In East Asian populations, the prevalence of the ALDH2 rs671 variant is 30-50%, making the National Human Brain Bank for Development and Function (the largest brain bank in East Asia) an important resource to explore the link between the ALDH2 rs671 polymorphism and Alzheimer's disease pathology. Here, using 469 postmortem brains, we find that while the ALDH2 rs671 variant is associated with increased plaque deposits and a higher Aß40/42 ratio, it is not an independent risk factor for Alzheimer's disease. Mechanistically, we show that lower ALDH2 activity leads to 4-HNE accumulation in the brain. The (R)-4-HNE enantiomer adducts to residue Lys53 of C99, favoring Aß40 generation in the Golgi apparatus. Decreased ALDH2 activity also lowers inflammatory factor secretion, as well as amyloid ß phagocytosis and spread in brains of patients with Alzheimer's disease. We thus define the relationship between the ALDH2 rs671 polymorphism and amyloid ß pathology, and find that ALDH2 rs671 is a key regulator of Aß40 or Aß42 generation.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Peptídeos beta-Amiloides/genética , Doença de Alzheimer/genética , Polimorfismo de Nucleotídeo Único , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído Desidrogenase/genética , Predisposição Genética para Doença
7.
BMC Pediatr ; 24(1): 196, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504218

RESUMO

BACKGROUND: Ifosfamide is a major anti-cancer drug in children with well-known renal toxicity. Understanding the mechanisms underlying this toxicity could help identify children at increased risk of toxicity. METHODS: The IFOS01 study included children undergoing ifosfamide-based chemotherapy for Ewing sarcoma or rhabdomyosarcoma. A fully evaluation of renal function was performed during and after chemotherapy. Proton nuclear magnetic resonance (NMR) and conventional biochemistry were used to detect early signs of ifosfamide-induced tubulopathy. The enzymatic activity of aldehyde dehydrogenase (ALDH) was measured in the peripheral blood lymphocytes as a marker of ifosfamide-derived chloroacetaldehyde detoxification capacity. Plasma and urine concentrations of ifosfamide and dechloroethylated metabolites were quantified. RESULTS: The 15 participants received a median total ifosfamide dose of 59 g/m2 (range: 24-102), given over a median of 7 cycles (range: 4-14). All children had acute proximal tubular toxicity during chemotherapy that was reversible post-cycle, seen with both conventional assays and NMR. After a median follow-up of 31 months, 8/13 children presented overall chronic toxicity among which 7 had decreased glomerular filtration rate. ALDH enzymatic activity showed high inter- and intra-individual variations across cycles, though overall activity looked lower in children who subsequently developed chronic nephrotoxicity. Concentrations of ifosfamide and metabolites were similar in all children. CONCLUSIONS: Acute renal toxicity was frequent during chemotherapy and did not allow identification of children at risk for long-term toxicity. A role of ALDH in late renal dysfunction is possible so further exploration of its enzymatic activity and polymorphism should be encouraged to improve the understanding of ifosfamide-induced nephrotoxicity.


Assuntos
Antineoplásicos , Rabdomiossarcoma , Sistema Urinário , Criança , Humanos , Ifosfamida/efeitos adversos , Aldeído Desidrogenase/uso terapêutico , Antineoplásicos/efeitos adversos , Rabdomiossarcoma/tratamento farmacológico
8.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542325

RESUMO

The cancer stem cell (CSC) hypothesis postulates that heterogeneous human cancers harbor a population of stem-like cells which are resistant to cytotoxic therapies, thus providing a reservoir of relapse following conventional therapies like chemotherapy and radiation (RT). CSCs have been observed in multiple human cancers, and their presence has been correlated with worse clinical outcomes. Here, we sought to evaluate the impact of drug dosing of the multi-tyrosine kinase inhibitor, sorafenib, on CSC and non-CSCs in soft tissue sarcoma (STS) models, hypothesizing differential effects of sorafenib based on dose and target cell population. In vitro, human cancer cell lines and primary STS from surgical specimens were exposed to escalating doses of sorafenib to determine cell viability and expression of CSC marker aldehyde dehydrogenase (ALDH). In vivo, ALDHbright CSCs were isolated, exposed to sorafenib, and xenograft growth and survival analyses were performed. We observed that sarcoma CSCs appear to paradoxically respond to the tyrosine kinase inhibitor sorafenib at low doses with increased proliferation and stem-like function of CSCs, whereas anti-viability effects dominated at higher doses. Importantly, STS patients receiving neoadjuvant sorafenib and RT on a clinical trial (NCT00864032) showed increased CSCs post therapy, and higher ALDH scores post therapy were associated with worse metastasis-free survival. These data suggest that low-dose sorafenib may promote the CSC phenotype in STS with clinically significant effects, including increased tumor growth and higher rates of metastasis formation in sarcoma patients.


Assuntos
Sarcoma , Humanos , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Sorafenibe/metabolismo , Aldeído Desidrogenase/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/metabolismo , Sarcoma/patologia , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral
9.
Int J Mol Sci ; 25(4)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38396862

RESUMO

Atrial fibrillation (AF), characterized by structural remodeling involving atrial myocardial degradation and fibrosis, is linked with obesity and transforming growth factor beta 1 (TGF-ß1). Aldehyde dehydrogenase 2 (ALDH2) deficiency, highly prevalent in East Asian people, is paradoxically associated with a lower AF risk. This study investigated the impact of ALDH2 deficiency on diet-induced obesity and AF vulnerability in mice, exploring potential compensatory upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme-oxygenase 1 (HO-1). Wild-type (WT) and ALDH2*2 knock-in (KI) mice were administered a high-fat diet (HFD) for 16 weeks. Despite heightened levels of reactive oxygen species (ROS) post HFD, the ALDH2*2 KI mice did not exhibit a greater propensity for AF compared to the WT controls. The ALDH2*2 KI mice showed equivalent myofibril degradation in cardiomyocytes compared to WT after chronic HFD consumption, indicating suppressed ALDH2 production in the WT mice. Atrial fibrosis did not proportionally increase with TGF-ß1 expression in ALDH2*2 KI mice, suggesting compensatory upregulation of the Nrf2 and HO-1 pathway, attenuating fibrosis. In summary, ALDH2 deficiency did not heighten AF susceptibility in obesity, highlighting Nrf2/HO-1 pathway activation as an adaptive mechanism. Despite limitations, these findings reveal a complex molecular interplay, providing insights into the paradoxical AF-ALDH2 relationship in the setting of obesity.


Assuntos
Aldeído-Desidrogenase Mitocondrial , Fibrilação Atrial , Animais , Camundongos , Aldeído Desidrogenase , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Fibrilação Atrial/genética , Fibrilação Atrial/complicações , Fibrose , Fator 2 Relacionado a NF-E2 , Obesidade/complicações , Obesidade/genética , Fator de Crescimento Transformador beta1/genética
10.
Oncogene ; 43(14): 1007-1018, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38361046

RESUMO

One-third of pediatric patients with osteosarcoma (OS) develop lung metastases (LM), which is the primary predictor of mortality. While current treatments of patients with localized bone disease have been successful in producing 5-year survival rates of 65-70%, patients with LM experience poor survival rates of only 19-30%. Unacceptably, this situation that has remained unchanged for 30 years. Thus, there is an urgent need to elucidate the mechanisms of metastatic spread in OS and to identify targetable molecular pathways that enable more effective treatments for patients with LM. We aimed to identify OS-specific gene alterations using RNA-sequencing of extremity and LM human tissues. Samples of extremity and LM tumors, including 4 matched sets, were obtained from patients with OS. Our data demonstrate aberrant regulation of the androgen receptor (AR) pathway in LM and predicts aldehyde dehydrogenase 1A1 (ALDH1A1) as a downstream target. Identification of AR pathway upregulation in human LM tissue samples may provide a target for novel therapeutics for patients with LM resistant to conventional chemotherapy.


Assuntos
Neoplasias Ósseas , Neoplasias Pulmonares , Osteossarcoma , Humanos , Criança , Aldeído Desidrogenase/metabolismo , Receptores Androgênicos/genética , Neoplasias Pulmonares/patologia , Osteossarcoma/patologia , Neoplasias Ósseas/patologia , RNA
11.
J Membr Biol ; 257(1-2): 3-16, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38356054

RESUMO

Cancer is one of the main causes of death among humans, second only to cardiovascular diseases. In recent years, numerous studies have been conducted on the pathophysiology of cancer, and it has been established that this disease is developed by a group of stem cells known as cancer stem cells (CSCs). Thus, cancer is considered a stem cell disease; however, there is no comprehensive consensus about the characteristics of these cells. Several different signaling pathways including Notch, Hedgehog, transforming growth factor-ß (TGF-ß), and WNT/ß-catenin pathways cause the self-renewal of CSCs. CSCs change their metabolic pathways in order to access easy energy. Therefore, one of the key objectives of researchers in cancer treatment is to destroy CSCs. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays an essential role in the protection of CSCs from reactive oxygen species (ROS) and chemotherapeutic agents by regulating antioxidants and detoxification enzymes. Human epidermal growth factor receptor 2 (HER2) is a member of the tyrosine kinase receptor family, which contributes to the protection of cancer cells against treatment and implicated in the invasion, epithelial-mesenchymal transition (EMT), and tumorigenesis. Aldehyde dehydrogenases (ALDHs) are highly active in CSCs and protect the cells against damage caused by active aldehydes through the regulation of aldehyde metabolism. On the other hand, ALDHs promote the formation and maintenance of tumor cells and lead to drug resistance in tumors through the activation of various signaling pathways, such as the ALDH1A1/HIF-1α/VEGF axis and Wnt/ß-catenin, as well as changing the intracellular pH value. Given the growing body of information in this field, in the present narrative review, we attempted to shed light on the function of Nrf2, HER2, and ALDH in CSCs.


Assuntos
Aldeído Desidrogenase , Fator 2 Relacionado a NF-E2 , Células-Tronco Neoplásicas , Receptor ErbB-2 , beta Catenina , Humanos , Aldeído Desidrogenase/metabolismo , Aldeídos/metabolismo , beta Catenina/metabolismo , Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Receptor ErbB-2/metabolismo
12.
Chem Biol Interact ; 391: 110910, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38364885

RESUMO

Aldehyde dehydrogenase 1A (ALDH1A) isoforms may be a useful target for overcoming chemotherapy resistance in high-grade serous ovarian cancer (HGSOC) and other solid tumor cancers. However, as different cancers express different ALDH1A isoforms, isoform selective inhibitors may have a limited therapeutic scope. Furthermore, resistance to an ALDH1A isoform selective inhibitor could arise via induction of expression of other ALDH1A isoforms. As such, we have focused on the development of pan-ALDH1A inhibitors, rather than on ALDH1A isoform selective compounds. Herein, we report the development of a new group of pan-ALDH1A inhibitors to assess whether broad spectrum ALDH1A inhibition is an effective adjunct to chemotherapy in HGSOC. Optimization of the CM10 scaffold, aided by ALDH1A1 crystal structures, led to improved biochemical potencies, improved cellular efficacy as demonstrated by reduction in ALDEFLUOR signal in HGSOC cells, and substantial improvements in liver microsomal stability. Based on this work we identified two compounds 17 and 25 suitable for future in vivo proof of concept experiments.


Assuntos
Isoenzimas , Neoplasias , Humanos , Aldeído Desidrogenase/metabolismo , Retinal Desidrogenase/metabolismo , Aldeído Oxirredutases/metabolismo
13.
Nat Commun ; 15(1): 1032, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310110

RESUMO

Glutarate is a key monomer in polyester and polyamide production. The low efficiency of the current biosynthetic pathways hampers its production by microbial cell factories. Herein, through metabolic simulation, a lysine-overproducing E. coli strain Lys5 is engineered, achieving titer, yield, and productivity of 195.9 g/L, 0.67 g/g glucose, and 5.4 g/L·h, respectively. Subsequently, the pathway involving aromatic aldehyde synthase, monoamine oxidase, and aldehyde dehydrogenase (AMA pathway) is introduced into E. coli Lys5 to produce glutarate from glucose. To enhance the pathway's efficiency, rational mutagenesis on the aldehyde dehydrogenase is performed, resulting in the development of variant Mu5 with a 50-fold increase in catalytic efficiency. Finally, a glutarate tolerance gene cbpA is identified and genomically overexpressed to enhance glutarate productivity. With enzyme expression optimization, the glutarate titer, yield, and productivity of E. coli AMA06 reach 88.4 g/L, 0.42 g/g glucose, and 1.8 g/L·h, respectively. These findings hold implications for improving glutarate biosynthesis efficiency in microbial cell factories.


Assuntos
Escherichia coli , Glutaratos , Escherichia coli/genética , Escherichia coli/metabolismo , Glutaratos/metabolismo , Glucose/metabolismo , Engenharia Metabólica/métodos , Aldeído Desidrogenase/metabolismo
14.
J Microbiol Biotechnol ; 34(4): 838-845, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38247212

RESUMO

Excessive alcohol consumption can have serious negative consequences on health, including addiction, liver damage, and other long-term effects. The causes of hangovers include dehydration, alcohol and alcohol metabolite toxicity, and nutrient deficiency due to absorption disorders. Additionally, alcohol consumption can slow reaction times, making it more difficult to rapidly respond to situations that require quick thinking. Exposure to a large amount of ethanol can also negatively affect a person's righting reflex and balance. In this study, we evaluated the potential of lactic acid bacteria (LAB) to alleviate alcohol-induced effects and behavioral responses. Two LAB strains isolated from kimchi, Levilactobacillus brevis WiKim0168 and Leuconostoc mesenteroides WiKim0172, were selected for their ethanol tolerance and potential to alleviate hangover symptoms. Enzyme activity assays for alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) were then conducted to evaluate the role of these bacteria in alcohol metabolism. Through in vitro and in vivo studies, these strains were assessed for their ability to reduce blood alcohol concentrations and protect against alcohol-induced liver damage. The results indicated that these LAB strains possess significant ethanol tolerance and elevate ADH and ALDH activities. LAB administration remarkably reduced blood alcohol levels in rats after excessive alcohol consumption. Moreover, the LAB strains showed hepatoprotective effects and enhanced behavioral outcomes, highlighting their potential as probiotics for counteracting the adverse effects of alcohol consumption. These findings support the development of functional foods incorporating LAB strains that can mediate behavioral improvements following alcohol intake.


Assuntos
Álcool Desidrogenase , Aldeído Oxirredutases , Etanol , Lactobacillales , Probióticos , Animais , Etanol/metabolismo , Álcool Desidrogenase/metabolismo , Ratos , Masculino , Probióticos/administração & dosagem , Lactobacillales/metabolismo , Concentração Alcoólica no Sangue , Fígado/metabolismo , Fígado/efeitos dos fármacos , Administração Oral , Leuconostoc mesenteroides , Aldeído Desidrogenase/metabolismo , Levilactobacillus brevis/metabolismo , Ratos Sprague-Dawley , Alimentos Fermentados/microbiologia
15.
BMC Oral Health ; 24(1): 43, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191346

RESUMO

BACKGROUND: Chronic restraint stress (CRS) has iteratively been reported to be possibly implicated in the development of numerous cancer types. However, its role in oral squamous cell carcinoma (OSCC) has not been well elucidated. Here we intended to evaluate the role and mechanism. METHODS: The effects of CRS were investigated in xenograft models of OSCC by using transcriptome sequencing, LC-MS, ELISA and RT-PCR. Moreover, the role of CRS and ALDH3A1 on OSCC cells was researched by using Trans-well, flow cytometry, western blotting, immunofluorescence, ATP activity and OCR assay. Furthermore, immunohistochemical staining was employed to observe the cell proliferation and invasion of OSCC in xenotransplantation models. RESULTS: CRS promoted the progression of OSCC in xenograft models, stimulated the secretion of norepinephrine and the expression of ADRB2, but decreased the expression of ALDH3A1. Moreover, CRS changed energy metabolism and increased mitochondrial metabolism markers. However, ALDH3A1 overexpression suppressed proliferation, EMT and mitochondrial metabolism of OSCC cells. CONCLUSION: Inhibition of ALDH3A1 expression plays a pivotal role in CRS promoting tumorigenic potential of OSCC cells, and the regulatory of ALDH3A1 on mitochondrial metabolism may be involved in this process.


Assuntos
Aldeído Desidrogenase , Neoplasias Bucais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Estresse Psicológico , Animais , Humanos , Modelos Animais de Doenças , Hormônios , Restrição Física/efeitos adversos
16.
Eur J Clin Invest ; 54(5): e14169, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38287209

RESUMO

BACKGROUND: Atherosclerosis is the salient, underlying cause of cardiovascular diseases, such as arrhythmia, coronary artery disease, cardiomyopathy, pulmonary embolism and myocardial infarction. In recent years, atherosclerosis pathophysiology has evolved from a lipid-based to an inflammation-centric ideology. METHODS: This narrative review is comprised of review and original articles that were found through the PubMed search engine. The following search terms or amalgamation of terms were used: "cardiovascular disease," "atherosclerosis," "inflammation," "GRP78," "Hsp60," "oxidative low-density lipoproteins," "aldehyde dehydrogenase," "ß2-glycoprotein," "lipoprotein lipase A," "human cytomegalovirus." "SARS-CoV-2," "chlamydia pneumonia," "autophagy," "thrombosis" and "therapeutics." RESULTS: Emerging evidence supports the concept that atherosclerosis is associated with the interaction between cell surface expression of stress response chaperones, including GRP78 and Hsp60, and their respective autoantibodies. Moreover, various other autoantigens and their autoantibodies have displayed a compelling connection with the development of atherosclerosis, including oxidative low-density lipoproteins, aldehyde dehydrogenase, ß2-glycoprotein and lipoprotein lipase A. Atherosclerosis progression is also concurrent with viral and bacterial activators of various diseases. This narrative review will focus on the contributions of human cytomegalovirus as well as SARS-CoV-2 and chlamydia pneumonia in atherosclerosis development. Notably, the interaction of an autoantigen with their respective autoantibodies or the presence of a foreign antigen can enhance inflammation development, which leads to atherosclerotic lesion progression. CONCLUSION: We will highlight and discuss the complex role of the interaction between autoantigens and autoantibodies, and the presence of foreign antigens in the development of atherosclerotic lesions in relationship to pro-inflammatory responses.


Assuntos
Aterosclerose , Pneumonia , Humanos , Chaperona BiP do Retículo Endoplasmático , Lipase Lipoproteica , Aterosclerose/metabolismo , Autoanticorpos , Inflamação , Autoantígenos , beta 2-Glicoproteína I , Lipoproteínas LDL , Aldeído Desidrogenase
17.
Clin Cancer Res ; 30(6): 1175-1188, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38231483

RESUMO

PURPOSE: DNA methylation causes silencing of tumor-suppressor and differentiation-associated genes, being linked to chemoresistance. Previous studies demonstrated that hypomethylating agents (HMA) resensitize ovarian cancer to chemotherapy. NTX-301 is a highly potent and orally bioavailable HMA, in early clinical development. EXPERIMENTAL DESIGN: The antitumor effects of NTX-301 were studied in ovarian cancer models by using cell viability, stemness and ferroptosis assays, RNA sequencing, lipidomic analyses, and stimulated Raman spectroscopy. RESULTS: Ovarian cancer cells (SKOV3, IC50 = 5.08 nmol/L; OVCAR5 IC50 = 3.66 nmol/L) were highly sensitive to NTX-301 compared with fallopian tube epithelial cells. NTX-301 downregulated expression of DNA methyltransferases 1-3 and induced transcriptomic reprogramming with 15,000 differentially expressed genes (DEG, P < 0.05). Among them, Gene Ontology enrichment analysis identified regulation of fatty acid biosynthesis and molecular functions related to aldehyde dehydrogenase (ALDH) and oxidoreductase, known features of cancer stem cells. Low-dose NTX-301 reduced the ALDH(+) cell population and expression of stemness-associated transcription factors. Stearoyl-coenzyme A desaturase 1 (SCD), which regulates production of unsaturated fatty acids (UFA), was among the top DEG downregulated by NTX-301. NTX-301 treatment decreased levels of UFA and increased oxidized lipids, and this was blunted by deferoxamine, indicating cell death via ferroptosis. NTX-301-induced ferroptosis was rescued by oleic acid. In vivo, monotherapy with NTX-301 significantly inhibited ovarian cancer and patient-derived xenograft growth (P < 0.05). Decreased SCD levels and increased oxidized lipids were detected in NTX-301-treated xenografts. CONCLUSIONS: NTX-301 is active in ovarian cancer models. Our findings point to a new mechanism by which epigenetic blockade disrupts lipid homeostasis and promotes cancer cell death.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Linhagem Celular Tumoral , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Inibidores Enzimáticos/uso terapêutico , Aldeído Desidrogenase/genética , DNA , Lipídeos/uso terapêutico
19.
Heart Lung Circ ; 33(2): 230-239, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177014

RESUMO

AIM: Pulmonary hypertension due to left heart disease (PH-LHD) is commonly seen in patients with heart failure (HF), but there are limited treatment options. Recent studies have shown an association between aldehyde dehydrogenase 2 (ALDH2) rs671 polymorphisms and pulmonary hypertension (PH). Therefore, this study aimed to investigate the occurrence of ALDH2 rs671 polymorphisms, and the association between ALDH2 and risk of PH-LHD in patients with HF. It also investigated different ALDH2 genotypes and examined their association with cardiac structure and function in HF patients with PH-LHD. METHODS: A total of 178 HF patients were consecutively enrolled in this study: 102 without PH-LHD and 76 with PH-LHD. Clinical data, parameters of echocardiography, and relevant biochemical indexes were recorded in both groups. Differences in data obtained between groups were compared, and the risk of variant ALDH2 polymorphisms with PH-LHD in HF patients was analysed using univariate and multivariate logistic regression. RESULTS: The prevalence of ALDH2 rs671 GA/AA polymorphisms (variant ALDH2) was 24 of 102 patients (23.53%) in the HF without PH-LHD group, and 32 of 76 patients (42.10%) in the HF with PH-LHD group, with a statistically significant difference. Univariate and multivariate logistical regression showed that variant ALDH2 is an independent risk factor for HF combined with PH-LHD. A higher proportion of patients with variant ALDH2 in the HF with PH-LHD group had a tricuspid regurgitation velocity >2.8 m/s, and they had higher values of peak early diastolic velocity of the mitral orifice/peak velocity of the early diastolic wave of the mitral orifice, maximum frequency shift of pulmonary valve flow, and pulmonary artery stiffness. CONCLUSIONS: Variant ALDH2 may be an independent risk factor for HF combined with PH-LHD. Variant ALDH2 may also be involved in pulmonary artery remodelling and is a potential new target for clinical treatment of PH-LHD.


Assuntos
Cardiopatias , Insuficiência Cardíaca , Hipertensão Pulmonar , Humanos , Hipertensão Pulmonar/etiologia , Cardiopatias/complicações , Fatores de Risco , Aldeído Desidrogenase , Aldeído-Desidrogenase Mitocondrial/genética
20.
Theranostics ; 14(2): 714-737, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169509

RESUMO

Rationale: Current therapies for metastatic osseous disease frequently fail to provide a durable treatment response. To date, there are only limited therapeutic options for metastatic prostate cancer, the mechanisms that drive the survival of metastasis-initiating cells are poorly characterized, and reliable prognostic markers are missing. A high aldehyde dehydrogenase (ALDH) activity has been long considered a marker of cancer stem cells (CSC). Our study characterized a differential role of ALDH1A1 and ALDH1A3 genes as regulators of prostate cancer progression and metastatic growth. Methods: By genetic silencing of ALDH1A1 and ALDH1A3 in vitro, in xenografted zebrafish and murine models, and by comparative immunohistochemical analyses of benign, primary tumor, and metastatic specimens from patients with prostate cancer, we demonstrated that ALDH1A1 and ALDH1A3 maintain the CSC phenotype and radioresistance and regulate bone metastasis-initiating cells. We have validated ALDH1A1 and ALDH1A3 as potential biomarkers of clinical outcomes in the independent cohorts of patients with PCa. Furthermore, by RNAseq, chromatin immunoprecipitation (ChIP), and biostatistics analyses, we suggested the molecular mechanisms explaining the role of ALDH1A1 in PCa progression. Results: We found that aldehyde dehydrogenase protein ALDH1A1 positively regulates tumor cell survival in circulation, extravasation, and metastatic dissemination, whereas ALDH1A3 plays the opposite role. ALDH1A1 and ALDH1A3 are differentially expressed in metastatic tumors of patients with prostate cancer, and their expression levels oppositely correlate with clinical outcomes. Prostate cancer progression is associated with the increasing interplay of ALDH1A1 with androgen receptor (AR) and retinoid receptor (RAR) transcriptional programs. Polo-like kinase 3 (PLK3) was identified as a transcriptional target oppositely regulated by ALDH1A1 and ALDH1A3 genes in RAR and AR-dependent manner. PLK3 contributes to the control of prostate cancer cell proliferation, migration, DNA repair, and radioresistance. ALDH1A1 gain in prostate cancer bone metastases is associated with high PLK3 expression. Conclusion: This report provides the first evidence that ALDH1A1 and PLK3 could serve as biomarkers to predict metastatic dissemination and radiotherapy resistance in patients with prostate cancer and could be potential therapeutic targets to eliminate metastasis-initiating and radioresistant tumor cell populations.


Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Masculino , Humanos , Animais , Camundongos , Peixe-Zebra/metabolismo , Linhagem Celular Tumoral , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Neoplasias da Próstata/genética , Biomarcadores , Família Aldeído Desidrogenase 1 , Retinal Desidrogenase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...